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Abstract—This paper proposes a novel harmonic suppression
scheme for 2-level inverter fed 3-terminal induction motor drives
using switched capacitive filter. Capacitor fed H-bridges used as
filters are cascaded to conventional 2-level inverter to eliminate
5th and 7th order harmonics for the full modulation range
including six-step operation. For the first time 2-level dodecagonal
voltage space vector is implemented with single DC supply
for 3-terminal induction motor drive. Enabling the switched
capacitive filtering at low voltage domain and shifting the high
frequency switching to the switched capacitive filter is shown. An
uniform PWM technique is shown which charges and maintains
the capacitor voltages while eliminating the 5th and 7th order
harmonics for the full speed range.

Index Terms—Induction motors, AC drives, pulse width mod-
ulation, DC-link, harmonics, dodecagonal, space vector.

I. INTRODUCTION

FOR low voltage medium power drives application, con-
ventional three phase 2-level inverter fed 3-terminal in-

duction motor drive is widely used. For operation in the full
speed range of the induction motor, the inverter has to operate
in the overmodulation region and the six-step mode. In over-
modulation region and six-step mode operation, substantial 5th
and 7th order harmonics are generated in the phase voltage.
The resulting 5th and 7th harmonic phase current, produce
6th harmonic torque ripple in the motor, which deteriorates
precise speed control of the machine and sometimes even lead
to mechanical breakaway [1].

To suppress the 5th and 7th order harmonics from the phase
voltage of the 2-level inverter, LC line filters are used. But, LC
line filters adds to the size, weight and cost of the drive system.
Hence, for applications like electric vehicle drives, use of LC
filters to enable the machine to operate in full speed range
without the effect of 5th and 7th order harmonics, is not a
viable option. Additionally inverter switching frequency is also
increased to suppress the harmonics, which leads to increased
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switching loss, making the drive less efficient. Different mod-
ulation techniques are also used in the overmodulation region
to filter the 5th and 7th order harmonics [2], [3].

Notches are introduced in the pole voltage waveform at
pre-computed angles to selectively eliminate a particular har-
monic from the phase voltage [4]–[9]. Selective Harmonic
Elimination (SHE) requires intensive offline as well as online
computation, which in many applications is a limitation to be
implemented. Moreover, notches introduced in SHE doesn’t
allow the six-step operation of the 2-level inverter, limiting
the speed range of the drive.

Inverters switching dodecagonal (12-sided polygon) voltage
space vectors has been shown to completely eliminate the
5th and 7th order harmonics from the phase voltage even
for extreme 12-step operation [10]. The works in [10]–[16],
have proposed several schemes for realization of multilevel
dodecagonal voltage space vectors for high voltage, high
power induction motor drives. However, multiple DC-supplies
are used in those topologies which add up to the size of the
inverter for voltage generation at specific ratios. The work
in [17], shows a condition when additional DC-supplies can
be replaced by capacitors for implementation of dodecagonal
voltage space vectors for open-end winding configuration of
IM drives. Hence, use of multiple DC-supplies are avoided in
[17] for open-end winding induction motor drives.

The work presented in this paper gives a solution to over-
come the mentioned problems associated with low voltage
medium power 3-terminal induction motor (without require-
ment for open-end winding) drives, through the following
contributions.
• A switched capacitive filtering scheme is proposed for the

first time which eliminates 5th and 7th order harmonics
from the phase voltage for the full modulation range in-
cluding the overmodulation region and six-step operation
of a 2-level inverter fed 3-terminal induction motor drive.
Hence, the induction motor can be operated for the full
speed range with complete elimination of 6th harmonic
torque ripple.

• The high frequency switching is shifted to the low voltage
switched capacitive filter. Thus, harmonic suppression is
achieved without increase in the switching frequency of
the 2-level inverter. This results in reduced switching
loss with enhanced harmonic suppression, compared to
2-level inverter. The switched capacitive filter is realized
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by capacitor fed H-bridges. As the capacitive filter is in
low voltage domain (14.45% of DC-supply), the H-bridge
switches can be implemented with low voltage devices
like MOSFETS. Hence, the overall size, weight and cost
of the drive can be drastically reduced when compared
to the use of LC filters.

• For the first time a 2-level dodecagonal voltage space
vector is implemented using single DC supply for a 3-
terminal induction motor. Hence, multiple power supplies
are avoided making the drive more compact for low
voltage medium power applications. This also results
an increase in linear modulation range by 7.79% as
compared to a conventional 2-level inverter.

• An uniform modulation technique is proposed for the
entire speed range of the motor while 5th and 7th
order harmonics are totally eliminated. The proposed
PWM technique charges the capacitors at the set voltage
at startup thus avoiding any precharging circuitry. The
PWM technique is also shown to maintain the capacitor
voltage while 5th and 7th order harmonic is completely
eliminated.

• The instantaneous phase voltage never exceeds (2/3)VDC
for which the machine windings are rated.

II. CONDITION FOR REPLACING DC-SUPPLY WITH
CAPACITOR

The work in [10], realizes dodecagonal voltage space vec-
tors for open-end winding configuration of IM drives, using
two 2-level inverters from both sides of the winding terminals
with DC-bus voltages of VDC and 0.366VDC . The work in
[17], ensures that no active power is contributed from the
secondary inverter feeding the open-end winding induction
motor. Hence, the additional DC-supply can be replaced by
a capacitor (controlled at voltage of 0.289VDC) as shown in
Fig. 1. The condition for replacing additional DC-supplies with
capacitors explained in this section is similar to [17], which
was analysed for open-end winding induction motor drive.
However the work presented in this paper is for 3-terminal
induction motor drive, hence the vector switchings to maintain
this condition are different from [17] and is explained in this
section(Fig. 3). Also, in the current work three capacitors need
to contolled, which is different from [17], where only one
capacitor needs to be controlled.

Let the hexagonal voltage space vector that can be formed
by inverter-1 in Fig. 1 be of radius VDC and the radius of
the resultant dodecagon that can be formed (by inverter-1 and
inverter-2) be Vd (Fig. 2). If the fundamental voltages from
both the possible voltage spaces are made equal, then active
power contribution by the inverter-2 for the same load can be
ensured to zero and hence, the DC-supply can be replaced
by capacitor. For extreme step operation in hexagonal and
dodecagonal voltage space, the fundamental phase voltages
are 0.637VDC and 0.659Vd respectively. By equating the two
fundamental voltages, the radius of the dodecagon for which
no active power is fed from inverter-2, is found in (1).

0.659Vd = 0.637VDC

Vd = 0.966VDC (1)
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Fig. 1. Power circuit for dodecagonal space vector switching for open-end
winding IM
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Fig. 2. Dodecagonal and hexagonal voltage space vectors which will have
same fundamental voltage

Two vectors of magnitude 0.966VDC (1D,12D), 15◦ dis-
placed from the hexagonal voltage space vector of magnitude
VDC (1H) can be generated by adding vector Vh to the
vector 1H as shown in Fig. 3. By vectorial subtraction, the
vector Vh is found out in (2).

Vh = 0.966VDC∠15
◦ − VDC∠0◦

Vh = 0.259VDC∠− 75◦ (2)

The vector Vh is generated in time average sense, by
switching between adjacent vectors Vn1(5

′) and Vn2(4
′)

with a duty ratio of k. As the H-bridge capacitor stage
forms a 3-level structure, the magnitude of Vn1 and Vn2 are
2VC(where, VC is equal to capacitor voltage) and 1.732VC
respectively (Fig. 3). From the volt-second balance the value
of VC and k are found out.

0.259VDC∠−75◦·T1 = 2VC∠120
◦·kT1+1.732VC∠90

◦·(1−k)T1
(3)

Resolving (3) into α− β axes and simplifying we get:

0.259VDC cos 105◦ = 2kVC cos 120◦+(1−k)1.732VC cos 90◦

(4)
0.259VDC sin 105◦ = 2kVC sin 120◦+(1−k)1.732VC sin 90◦

(5)
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Fig. 4. Power circuit for dodecagonal space vector switching for star
connected IM

From (4) and (5) we get:

VC = 0.1445VDC (6)

k = 0.464 (7)

Hence, the H-bridge capacitor voltage has to be controlled at
0.1445VDC to generate the dodecagonal vectors for 5th and
7th order harmonic elimination.

III. POWER CIRCUIT WITH SWITCHED CAPACITOR FILTER

The aim of this work is to generate the vectors as explained
in previous section, for star connected IM. The open-end wind-
ing configuration enables inherent voltage vector subtraction.
When these vectors are to be fed from one side of the winding,
the vector subtraction will be substituted by vector addition.
The voltage vector addition is possible for star connected
IM, if the capacitors are connected in H-bridge configuration
cascaded to 2-level configuration for each phase as shown in
Fig. 4. Hence, the vectors Vn1 and Vn2 (Fig. 3) will be
switched by the cascaded stage of capacitors connected in H-
bridge configuration, to form the average vector Vh which
will add up to the 2-level hexagonal vectors (1H,2H, ..6H)
to form the dodecagonal vectors 1D,2D, ...12D.

As the cascaded capacitor connected H-bridge stage can
form a 3-level structure [18], to generate active vectors of
magnitude 0.289VDC , the capacitor voltage can be equal to
half that magnitude, 0.1445VDC . Hence, with this topology, an
added advantage of lesser voltage stress for H-bridge switches
and less dV/dt in pole voltage can be achieved. In Fig. 3, it
is seen that the projection of the outer vector Vn2 is always
zero to the main 2-level primary vector 1H, as the vector Vn2

of the 3-level configuration, lies at the mid-point of the sector

150O
0.966VDC

A

B

X

Fig. 5. Circle inscribed by the maximum voltage space vector for dodecago-
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Fig. 6. H-bridge state for a particular current direction. (a) H-bridge state is
-1, capacitor getting charged; (b) H-bridge state is 0, capacitor is bypassed

3′0′5′. Hence, the instantaneous phase voltage never exceeds
(2/3)VDC(maximum phase voltage for conventional 2-level
inverter), for which the machine windings are rated.

In linear modulation range, the maximum voltage space
vector that can be realized by PWM for dodecagonal voltage
space vector will have a radius equal to that of the inscribed
circle for the dodecagon as shown in Fig. 5. The radius of the
inscribed circle OX, is computed in (8).

OX = OB cos 60◦

OX = 0.966VDC × 0.966 = 0.933VDC (8)

From (8), the peak of the fundamental of the phase voltage
is computed in (9).

Vphase,pk = (2/3)0.933VDC = 0.622VDC (9)

Hence, the maximum modulation index possible is 0.622
in linear modulation range. In 2-level inverter the maximum
modulation index in linear range possible is 0.577. Hence, an
increase of 7.79% in maximum modulation index in linear
range is obtained with the proposed topology.

IV. CAPACITOR VOLTAGE CONTROL

The cascaded layer of capacitor connected H-bridge can
either add (1), subtract (-1) or bypass (0) the capacitor voltage
over the 2-level pole voltage. For a given direction of the load
current the H-bridge states −1 and 0 will have charging effect
and no effect respectively, on the capacitor voltage as shown
in Fig. 6.

To synthesize vector 1D, the capacitor connected H-bridges
has to add the vector Vh to the 2-level vector 1H. Consider,
the vector 1D to be generated for duration T1. Hence, the
H-bridges has to apply 5′ for kT1 and 4′ for (1 − k)T1. 5′
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Fig. 7. Zone of control of the individual phase capacitors.

is formed by the H-bridge state of (-11-1) and 4′ formed by
the H-bridge states of (01-1). It can be observed that while
switching 5′ and 4′, the phase current will have charging
and byapassing effect respectively, on the R-phase capacitor
CR. The voltage controller modulates the value of k based
on current value of CR voltage, to control the voltage of
CR when vector 1D is generated. Similarly, other phase
capacitor voltages are controlled when other vectors of the
dodecagons are generated. Depending on the sector number,
the appropriate capacitors can be controlled as shown in Fig. 7.
It should be noted that when vectors 5′ and 4′ are applied for
generation of dodecagonal vector 1D, switching states 1 and
-1 is applied continuously for CY and CB respectively. Hence,
capacitors CY and CB will see the natural ripple due to the
phase current of the machine when vector 1D is generated. CY
and CB can be controlled when vectors (4D,5D,10D,11D)
and (2D,3D,8D,9D) are generated respectively as shown in
Fig. 7.

Three seperate integral controllers are implemented for the
capacitor voltages of three phases. They give the outputs
kR, kY , kB according to the respective capacitor voltage feed-
back. The sector number is used to multiplex the value of k
to the corresponding controller outputs as shown in Fig. 8.

The worst case capacitor ripple will occur for extreme 12-
step(50Hz) operation. At 50Hz(time period of 20ms) each
active vector is being switched for 30◦ duration(1.67ms)
Hence, the capacitor has to be sized for 1.67ms. Thus, the
size of the capacitor can be determined by (10).

C =
T30oIrated
4VC

(10)

V. PWM GENERATION

To calculate the active vector timing duration the reference
voltage vector is required. Once, reference voltage vector is
obtained it can be resolved into Vα, Vβ . The active vector

R-phase
Controller

Y-phase
Controller

B-phase
Controller

VCref

VCR

VCY

VCB

k

kR

kY

kB

Sector Number

Fig. 8. Voltage controller for the capacitors.
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Fig. 9. PWM scheme for the proposed inverter

timings can be calculated as shown below [13], where S is
the sector number:

T1 =
2Ts
Vd

[sin(S · 30o − 15o) · Vα − cos(S · 30o − 15o) · Vβ ]

T2 =
2Ts
Vd

[− sin((S−1)·30o−15o)·Vα−cos(S·30o−15o)·Vβ ]

T0 = Ts − T1 − T2 (11)

The active vector durations and the duty ratio k is sampled at
the start of the sampling interval. Depending on sector number
switching state decoders generate the switching states for the
primary and secondary inverters.

Once, the active vector time durations are calculated and k
is sampled at Tstart of a sampling interval (Fig. 9), PWM1,
PWM2 and PWM3 are generated, which gives the active
vector duration information to the switching state decoder.
PWMC1 and PWMC2 gives the information of k to the
switching state decoder for the H-bridges. The PWM scheme
is shown in Fig. 9. The switching state decoder, decodes the
switching states from the sector number information and drives
the gate driver of the switches. Based on the vector formation
scheme explained in previous sections the switching table is
shown in Table I. The 2-level inverter and H-bridge switching
states required to generate a particular vector in the dodecago-
nal vector space is shown in Table I. For the 2-level inverter
1 indicates the pole voltage connected to the positive rail of
the DC-supply and 0 indicates the pole voltage connected to
the negative rail of the DC-supply. For the H-bridge states,
1,−1,0 indicate capacitor voltage addition, subtraction and
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TABLE I
SWITCHING STATES FOR 2-LEVEL INVERTER AND CASCADED

H-BRIDGE FOR DODECAGONAL VOLTAGE SPACE VECTOR
FORMATION

ACTIVE VECTORS 2-LEVEL H-BRIDGE
k (1-k)

1D 100 -11-1 01-1
2D 110 1-11 1-10
3D 110 -111 -110
4D 010 1-1-1 10-1
5D 010 -1-11 -101
6D 011 11-1 01-1
7D 011 1-11 0-11
8D 001 -11-1 -110
9D 001 1-1-1 1-10

10D 101 -111 -101
11D 101 11-1 10-1
12D 100 -1-11 0-11

bypassing over the 2-level pole voltage respectively.

VI. RESULTS

The experiment is performed on a 3-phase 3.7kW star
connected induction motor at no-load. V/f profile is maintained
for speed control of the motor. The timing calculations,
voltage controllers and current direction sensing are done in
TMS320F2812 DSP. The sector and PWM information is
communicated to the switching state decoder, which generates
the driving signal for the switches. Before the switching signal
is fed to the gate drivers, a dead time of 2µs is provided
between the complementary switching signals. The switching
state decoder and the dead time blocks are implemented
in Xilinx Spartan-3 XC3S200 FPGA as shown in Fig. 10.
75A, 1200V Semikron SKM75GB12T4, IGBT based half-
bridge modules are used for the 2-level inverter and 35A,
1200V FGA25N120ANTD IGBTs are used for the H-bridge
switches. Considering the DC-bus to be 200V, the set value
of the capacitor becomes 28.9V. The rated current for 3.7kW
machine is approximately 5A and allowing a 5% ripple in the
capacitor voltage, the value of the capacitor from (10) equates
to 5800µF. Since, we are operating only at no-load 4400µF
capacitors are used for the H-bridge connected capacitors per
phase. The steady state waveforms at 10Hz, 30Hz, 40Hz and
extreme 12-step operation at 50Hz are shown in Fig. 11. The
waveform for 10Hz is recorded with 4 samples per sector of
the dodecagon or 48 samples in a fundamental cycle. The
waveforms for 30Hz and 40Hz are recorded with 2 samples
per sector of the dodecagon or 24 samples in a fundamental
cycle. Synchronous PWM was used for all the frequency of
operation. The normalized harmonic spectrum of the phase
voltage is shown for 10Hz, 30Hz, 40Hz and 50Hz in Fig. 12.
The harmonic analysis is done at 24 samples per fundamental
cycles for 10Hz, 30Hz and 40Hz. From Fig.11d it can be
seen that the primary inverter is operating at full modulation
index(6-step) while the 5th and 7th order harmonic is totally
eliminated from the phase voltage (as shown in Fig. 12d).
The steady state voltage ripple in the H-bridge capacitors
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Fig. 10. Block diagram of the experimental setup of the IM drive

(a) 10Hz(48 samples/cycle) (b) 30Hz(24 samples/cycle)

(c) 40Hz(24 samples/cycle) (d) 50Hz(12-step operation)
Fig. 11. Steady state experimental waveforms at no-load. (a) 1: Phase
voltage(100V/div), 2: 2-level inverter pole voltage(200/div), 3: H-bridge
voltage(100V/div), 4: Phase current(1A/div). Timescale-20ms/div. (b) 1: Phase
voltage(100V/div), 2: 2-level inverter pole voltage(200V/div), 3: H-bridge
voltage(100V/div), 4: Phase current(1A/div). Timescale-5ms/div. (c) 1: Phase
voltage(100V/div), 2: 2-level inverter pole voltage(200V/div), 3: H-bridge
voltage(100V/div), 4: Phase current(1A/div). Timescale-5ms/div. (d) 1: Phase
voltage(100V/div), 2: 2-level inverter pole voltage(200V/div), 3: H-bridge
voltage(100V/div), 4: Phase current(1A/div). Timescale-5ms/div.

(a) (b)

(c) (d)
Fig. 12. Normalized harmonic spectrum for phase voltages at: (a) 10Hz, (b)
30Hz, (c) 40Hz and (d) 50Hz
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Fig. 13. Steady state H-bridge capacitor ripple at 50Hz. 1: R-phase capacitor
voltage ripple(2V/div), 2: Y-phase capacitor voltage ripple(1V/div) 3: B-phase
capacitor voltage ripple(1V/div), 4: Phase current(1A/div)

Fig. 14. Transient waveform during motor startup. 1: Phase volt-
age(100V/div), 2: DC-bus voltage(200V/div) 3:H-bridge capacitor volt-
age(30V/div), 4: Phase current(2A/div)

of the individual phases are shown in Fig. 13. It can be
seen that the capacitor voltage is controlled for a duration
equivalent to 120◦ in the fundamental cycle, rest of the
duration it is having a 6th harmonic ripple as shown in Fig.
13. From Fig. 13 it can also be observed that the voltage ripple
(approximately 1V with set voltage at 28.9V) in the capacitor
is approximately 0.7%(≤5%), which is well within acceptable
limits. The current THD, for extreme 12-step operation(50Hz)
as shown in Fig. 13 is 14.52%. In Fig. 14 the transient voltage,
current, DC-bus and capacitor voltage during motor startup
is recorded. It can be seen that the voltage controller builds
up the capacitor voltage to 0.1445 times the DC-bus voltage.
Hence, the H-bridge capacitors need no precharging circuitry.
In Fig. 15, the closed loop transient waveform for machine
speed reversal is shown. The machine speed is reversed from
48Hz to -48Hz. The smooth phase reversal can be seen from
the phase current and the rotor position waveform. It can be
seen that even during reversal the H-bridge capacitor voltage
is tightly controlled at 28.9V (14.45% of DC bus voltage of
200V).

In Fig. 16, the effectiveness of the voltage controller is
shown. At A, the controller is disabled and the integrator
of the integral controller is reset. It can be seen that the
capacitor discharges. At B, the controller is again enabled and
the capacitor voltage quickly builds up to the reference set.

In Table II the WTHD [19] comparison of phase voltages
for the proposed inverter and conventional 2-level inverter
is shown. The switching frequency of the 2-level inverters
for both the proposed inverter and conventional case is kept
constant according to the frequency of operation. It is evident
that harmonic content in the phase voltage has been drastically
reduced with the switched capacitor filters without the need

Fig. 15. Transient waveform during motor speed reversal from 48Hz to
-48Hz. 1: Machine speed(2500rpm/div), 2: Rotor Position(6.28rad/div) 3:H-
bridge capacitor voltage(40V/div), 4: Phase current(2A/div), Time: 1s/div

Fig. 16. Transient waveform during capacitor voltage controller reset and set
operation. 1: R-phase capacitor voltage(10V/div), 2: Y-phase capacitor volt-
age(10V/div) 3:B-phase capacitor voltage(10V/div), 4: Phase current(2A/div)

of higher switching frequency for the 2-level inverter. The
WTHD was computed as per (12), where V1 indicates the
peak of fundamental voltage and Vh is the peak of the voltage
of harmonic order h.

WTHD =
1

V1

√√√√ ∞∑
h=2

(
Vh
h

)2

(12)

Table III compares the switching frequencies of the 2-level
inverter and the capacitor fed H-bridges at various frequency of
operation. It is clearly seen that the DC supply connected two-
level inverter is switching at lower switching frequency and
the harmonic suppression is done by the H-bridge capacitive
filter, which is switching at higher frequency. The voltage level
of the capacitive filter is just 14.45% of the DC supply. If
comparable harmonic reduction is required for standard two-
level inverter, then the inverter switching frequency has to be
increased. Thus, qualitatively it can be said that the switching
loss of the proposed inverter with switched capacitive filter,

TABLE II
WTHD OF PHASE VOLTAGE

Frequency(Hz) Phase Voltage WTHD(%)
Proposed Inverter 2-level Inverter

10 1.54 2.98
20 0.86 2.40
30 0.83 1.89
40 0.82 1.70
50 1.26 3.93
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TABLE III
SWITCHING FREQUENCY COMPARISON OF 2-LEVEL
INVERTER AND CAPACITOR FED H-BRIDGE FILTER

Frequency(Hz) Samples/Cycle Switching Frequency(Hz)
2-level H-bridge

10 48 350 880
20 48 700 1760
30 24 570 1350
40 24 760 1800
50 12 50 550

is reduced compared to standard two-level inverter, while
achieving substantial harmonic reduction.

VII. CONCLUSION

A novel harmonic suppression scheme is proposed in this
work using switched capacitive filter for 2-level inverter fed
3-terminal induction motor drive, which is commonly used
in low voltage medium power drives applications. The salient
features of this work are as follows.
• 5th and 7th order harmonic elimination for the full

modulation range including six-step operation of the 2-
level inverter fed motor drive, using switched capacitive
filter.

• An uniform PWM technique for the entire speed range
which not only charges and maintains the capacitor volt-
age, but also eliminates the 5th and 7th order harmonics
from the phase voltage.

• Shifting high frequency switching to low voltage capaci-
tor fed H-bridges, thus reducing the switching loss while
harmonics are getting suppressed.

• Implementation of single DC supply fed 2-level do-
decagonal voltage space vector for 3-terminal induction
motor drive for the first time. This also ensures an in-
crease in linear modulation range by 7.79% as compared
to 2-level inverter.

• Reduction in the H-bridge capacitor voltage to just
14.45% of DC supply, thus making the switched capacitor
H-bridge filtering stage more compact and less expensive
compared to LC filters.

• The instantaneous phase voltage never exceeds
(2/3)VDC , for which the machine windings are
rated.

• In case of fault in the H-bridge filter, the H-bridges can
be bypassed and the driver can be operated by the 2-level
inverter.

The mentioned salient features of the proposed work makes it
a compact and cost effective solution for harmonic suppression
in low voltage medium power drives applications where pre-
cise speed control is critical, like electric vehicle applications.
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